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The Takayanagi-like mechanical model introduced by Grubb for semicrystalline high-modulus fibres is 
used for linear polyethylenes covering the range of crystal weight fraction 0.28-0.66. This model assumes 
an interruption of crystal continuity in the mechanically active part of the fibre, which is consistent with 
the relatively high elasticity of the fibres from medium- and low-crystallinity materials. A novel method is 
proposed for determining the fraction f of the interrupting amorphous phase from the stress-elongation 
curves of the fibres assuming a Gauss/an behaviour at low strains. A universal relationship is found between 
f and the compliance of the fibres. The volume fraction of the mechanically active part of the fibres is 
shown to decrease along with the decreasing crystallinity of the starting materials, indicating a gradual 
reduced capability to undergo a fibrillar transformation. 
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INTRODUCTION 

Modelling is a natural stage in the search to understand 
the structure-mechanical property relationships of solid 
polymers. Fibres from semicrystalline polymers have 
received much attention in this regard, notably high- 
density polyethylene, which led to high-modulus and 
high-strength fibres. Peterlin has laid down the pioneer 
'fibrillar model' based only on structural grounds L2, in 
the case of solid-state drawing, by the combination of 
extensive X-ray diffraction studies, electron microscopy, 
infra-red spectroscopy and thermal analyses. A number 
of different structural models have been developed for 
fibres processed by melt extrusion 3-7 or solution spin- 
ning 8'9, but all models contain fibril-like structural units 
with various arrangements of lamellar counterparts. 

In parallel, mechanical models for fibres have been 
derived from the structural analogues 1'1°-~3. These 
mechanical models involve some of the main structural 
features of the fibres such as chain orientation, crystallite 
dimensions, crystal-amorphous long period and crystal- 
linity, together with the intrinsic elastic moduli of the 
various phases. Generally, a continuous structure of 
perfectly oriented chains has been assumed to account 
for the ultra-high modulus of highly drawn fibres, which 
is currently in the range 50-150 GPa xz-zz depending on 
the process, starting material, drawing temperature, 
molecular weight, etc. This assumption involves either 
taut tie molecules between lamellar crystals as proposed 
by Peterlin 2, or needle-like crystals as suggested by 
Barham and Arridge 11 or crystalline bridges according 
to Gibson et al. ~2. Grubb x3 proposed an alternative 
model, which assumes that the fibrillar crystals contain 
defective regions made of entanglement clusters that 
interrupt the crystal continuity. The Takayanagi-like 
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scheme of this model shown in Figure 1 consists of a 
'series' and 'parallel' coupling of the various parts of the 
fibre. The left-hand branch of the model relates to the 
fibrillar crystals of volume fraction b with respect to the 
whole material in which the defective regions of entangle- 
ment clusters have a volume fraction f and an intrinsic 
modulus El. The right-hand branch corresponds to the 
stacking of lamellar crystals and amorphous layers along 
the fibre axis. The overall crystallinity is X c, and E c and 
Ea are the intrinsic moduli of the crystalline and 
amorphous phases. 

Some comments must be made about this model. The 
first point is that the complete separation of fibrillar and 
lamellar components relies on the well known shish- 
kebab structure of melt- and solution-spun fibres involving 
chain-extended crystals and overgrown lamellar crystals13. 
But the analogy is not obvious in the case of solid-state 
drawing, which proceeds through a fragmentation of the 
large crystalline lamellae and a concomitant pulling out 
of the intercrystalline tie molecules and entangled chain 
folds from the fracture surfaces, partially unfolding the 
chains parallel to the draw direction 2. However, the 
remaining chain-folded crystal blocks, which cannot 
transmit the stress directly through their fold surfaces, 
may be associated with the lamellar component of the 
model. The unfolded chains partially recrystallized during 
the drawing process constitute the fibrillar component. 
The second point to be mentioned is that only the crystal 
continuity is interrupted in Grubb's model. The fibrillar 
continuity necessary to transmit the load throughout the 
fibre is still preserved by means of crystalline bridges or 
taut tie molecules lying between the adjacent fibrils. 

In a study concerned with the drawing behaviour of a 
linear low-density polyethylene (LLDPE) 23, we reported 
that the fibres exhibit original mechanical properties, i.e. 
a good tensile strength trR~0.6GPa associated with a 
rather high modulus E ~  10GPa and a large residual 
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Figure 1 Modified Takayanagi-like model for semicrystalline high- 
modulus fibres according to Grubb 13 

elasticity e~>10%. This latter feature is particularly 
inconsistent with the mechanical models involving either 
crystal continuity or taut tie chains. But, on the other 
hand, Grubb's model can account for a large elasticity 
owing to the interruption of the crystal continuity by the 
defective amorphous regions in the fibrillar crystals. We 
have applied this model in the case of fibres drawn from 
LLDPE having a density p=0.93024'25. Thanks to a 
novel method for determining the parameter f ,  we have 
established correlations between this parameter and the 
mechanical properties of the fibres. The success of this 
approach led us to extend our study to linear polyethylenes 
covering a wide range of crystallinities. 

THEORETICAL CONSIDERATIONS 

Tensile modulus 
Takayanagi-like models are generally purely mechan- 

ical analogues for multiphase systems whose only elements 
of structural nature are the volume fractions of the 
different parts. The modified model proposed by Grubb 
(Figure I) has additional structural bases, notably as 
concerns the 'parallel' coupling of two branches associated 
with the fibrillar and lamellar parts of the material. The 
modulus E for such an arrangement is: 

E = b[(1 - f ) / E ~ + f / E 1 ]  - 1  _[_ (1 --b) x 

{[X~- (1 - f ) b ] / ( 1  - b)E c + (1 - X c - f b ) / ( 1  - b)Ea}-i 

(1) 

Considering that Ea<<Ec (see ref. 2 for instance), and 
assuming that f<< 1, as will be shown later, the above 
equation can be reduced to: 

E = b[(1 - f ) / E  c nt-f/E1] - 1  (2) 

This approximation is equivalent to neglecting the 
right-hand branch of the model, the left-hand branch 
being representative of the mechanically active part of 
the fibre. An additional simplification involving the 
previous assumption f<< 1 can be introduced into equation 
(2), leading to the final relation for the modulus: 

E = bEc(1 + fEc /E  1)- 1 (3) 

Elongation ratio 

The left-hand branch of the model of Figure I, which 

corresponds to the mechanically active part of the fibre, 
is a 'series' phase coupling that obeys an additivity law 
of the elastic strains in the crystalline and amorphous 
phases, with coefficients respectively equal to the volume 
fractions of the two phases. This leads to the following 
strain-balanced equation: 

/~ . . . . .  - 1= (2c- 1 ) ( l - f ) +  (2x- 1)f (4) 

where 2 . . . . .  is the macroscopic elongation ratio applied 
to the fibre and 2c and 21 are the respective elongation 
ratios of the crystalline and amorphous phases in the 
mechanically active part of the fibre. Taking into account 
that 2c-  1 <<21 - 1, owing to the much greater stiffness of 
the crystal compared with the amorphous phase, equation 
(4) can be reduced to: 

'~ . . . . .  - 1 = ( 2 1 - 1 ) f  (5) 

In fact, this latter relation only holds true if f is not too 
small; otherwise the two members of the right-hand side 
of equation (4) are of the same order of magnitude. 

Stress-elongation curves 

We have previous!y emphasized that the characteristic 
sigmoidal shape of the stress-elongation curves of 
the fibres from LLDPE is relevant to a rubber-like 
behaviour 24'25. This is consistent with the fact that the 
left-hand side of the model of Figure 1 represents the 
mechanically active part of the fibre, if one considers that 
the amorphous phase in polyethylene is rubbery at room 
temperature and that this latter is much more compliant 
than the crystal. It follows that, at low strain, the 
stress-elongation curves of the fibres should obey an 
equation derived from the Gaussian statistics of chains 
and having the general form26: 

a = A(21-21-2) (6) 

where a is the stress per unit unstrained area in the 
amorphous fraction f of the mechanically active part of 
the fibre having an elongation ratio 21, and A is a constant 
characteristic of the molecular network at a given 
temperature. This treatment assumes that the fraction f 
is not constituted by entanglement clusters only, but also 
contains all unstrained chains in the form of slack tie 
molecules and entangled loose chain folds. From a strict 
mechanical standpoint, oriented amorphous chains such 
as taut tie molecules must be associated with the 
crystalline part of the fibrillar component of the model. 
Indeed, such molecules are not allowed to contribute to 
the elastic strain as long as the applied stress is lower 
than the level of the internal stresses that enforce the 
amorphous chain orientation within the fibre. 

The tangent at the origin of the stress-strain relation- 
ship (6) has an equation: 

a = 3A(21 - 1) (7a) 

o r  

Figure 2 
equation: 

o r  

t7 ~- 3 a f -  1(~. . . . . .  - -  1)  ( 7 b )  

shows that any arbitrary straight line of 

= e ( , ~ -  1) (8a) 

O" = n f -  1 ( • . . . . .  - - 1 )  w i t h  B < 3 A  (8b) 

has an intersection with the stress-elongation curve of 
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Figure 2 Determination method of fraction f in the case of a fibre 
from sample $4 having a draw ratio A=7.3. (a) Plots of (1) the 
experimental stress-elongation curve of the fibre, (2) a bundle of 
arbitrary straight lines following equation (8b) with various values of 
the constant B and (3) the tangent at the origin to the stress-elongation 
curve following equation (7). (b) Plot of the (~-1-1) values computed 
from equation (9) as a function of (2 . . . . .  - - 1 )  

the fibre, which must verify both equations (6) and (8a), 
and this leads to the following relation: 

(21 _ 212)/(2, _ 1) = B/A (9) 

Numerical resolution of equation (9) gives a value of 
21 for every B/A value, which can be determined 
graphically, according to Figure 2a, from the ratio of the 
slope of the arbitrary straight line (equation (8b)) to the 
slope of the tangent to the stress-elongation curve 
(equation (7b)). 

The plot of (21 - l) as a function of (2 . . . . .  - 1) gives 
a linear relationship as shown in Figure 2b, which 

supports a posteriori the assumption of 'Gaussian' 
behaviour for the active amorphous phase at low strains 
(viz. equation (6)). The value of fraction f can then be 
obtained from the slope of the graph of Figure 2b 
according to equation (5). 

EXPERIMENTAL 

Six 'linear polyethylenes' having roughly similar mol- 
ecular weights and different densities (i.e. different crystal 
weight fractions) have been studied. These commercial- 
grade polymers are ethylene/1-butene random copolymers 
containing various concentrations of 1-butene units, 
which control the density. Table 1 shows the molecular 
and physical characteristics of the samples. 

The polymers were compression moulded at 160°C 
into sheets about 0.5 mm thick, and were allowed to relax 
at this temperature for 10min before cooling at about 
10°Cmin -1. Dumbbell-shaped specimens with gauge 
dimensions 20 × 5mm 2 were cut from the sheets and 
drawn at 80°C in an Instron tensile testing machine at 
a constant cross-head speed of 50 mm min-  ~. The draw 
ratio is defined as A = L/Lo. The fibres having a gauge 
length of 50mm were tested at room temperature using 
a cross-head speed of 1 mm min-  a. The tensile modulus 
was determined from the initial slope of the stress-strain 
curves of the fibres. 

RESULTS AND DISCUSSION 

The plots of the tensile modulus E versus draw ratio A 
for the six samples S1 to $6 are shown in Figure 3. The 
data have been reported on two separate graphs having 
different scales on the ordinate axis in order to provide 
better clarity in the range of low-modulus values. The 
plots exhibit a clear positive curvature, as already 
reported in our studies of the mechanical behaviour of 
fibres drawn from LLDPE 23-25. A slight negative 
curvature of the E versus A plot has also been observed 
before reaching the maximum achievable draw ratio 24,2 5, 

namely for A > 11. This is relevant to the formation of 
voids 27 as confirmed by the whitening of the fibres. 
Therefore, the present study has been limited to the range 
of draw ratios without whitening of the fibres. 

In a recent paper, Leung et al. 28 reported Young's 
modulus data of oriented ethylene/1-butene copolymers 
determined from viscoelastic measurements at 10 Hz, in 
the range of draw ratios 1 < A < 9. These data fall roughly 
into the range of our results, for samples having similar 
crystallinity. However, Leung et al. observed nearly linear 
relationships of E versus A, as has often been reported in 
the case of high-density polyethylenes 2'14-17'2°'21, while 

Table 1 Weight- and number-average molecular weights, ~ t  w and ~O',, concentration of 1-butene comonomer,  C B, density p and crystal weight 
fraction X c, of the polyethylene samples studied 

CR P 
Sample Trade name /0'w × 10-3 )~n X 10 3 (mol%) (gcm -3) X c  a 

S 1 Eltex 157 30 0.6 0.950 0.66 
$2 Marlex 178 19 1.1 0.943 0.62 
$3 Lotrex 136 31 2.5 0.930 0.53 
$4 Lotrex 140 29 5 0.919 0.43 
$5 Norsoflex 161 32 8 0.910 0.34 
$6 Norsoflex 148 35 12 b 0.900 0.28 

" Determined from differential scanning calorimetry according to ref. 23 
b Sample $6 contains a few propylene units 
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all of our samples follow very well E -  1 versus A -  2 linear 
relationships, as shown in Figure 4. 

Determinations of the parameter  f have been made in 
parallel with the modulus measurements. The stress- 
elongation curves recorded at room temperature for 
fibres of the six polymers drawn up to the same draw 
ratio A = 10, at 80°C, are shown in Figure 5. The reduced 
stress a/E is reported on the ordinate axis in order to 
allow comparisons between the samples irrespective of 
the crystallinity, which affects the stiffness. Samples $3 
and $4 exhibit a typical rubber stress-elongation curve 
with an intermediate linear domain characteristic of the 
asymptotic Gaussian behaviour and having a slope equal 
to about  one-third of the initial slope. This pecularity 
was used in our previous study 25 for determining the 
fraction f in the case of a L L D P E  of density p = 0.930. 
However, it can be seen in Figure 5 that the ratio of the 
slope of the intermediate linear part  to the slope at the 
origin of the stress-elongation curve is smaller than 
one-third in the case of samples S1 and $2, and greater 
than one-third for samples $5 and $6. The reason for 
this may be that the more crystalline S1 and $2 samples 
are prone to undergo chain slippage within the crystal 
phase with a concomitant creep effect. This has been 
clearly demonstrated by Cansfield et al. 29 in the case of 
fibres from high-density polyethylenes, for strain rates 
close to that used in our experiments (i.e. d2 /d t=3  × 
10-3s-1) .  On the other hand, the low-crystallinity 
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Figure 4 Plots of the compliance E -1 as a function of A -2 (same 
symbols as in Figure 3) 
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Mechanical model for fibres. J. M. Rossignol et al. 

whatever the crystallinity of the starting material, in 
agreement with the assumption f<< 1, on which equation 
(3) relies. 

Plotting the f data as a function of the compliance 
E-1 for the six samples in Figure 7 shows a unique and 
roughly linear correlation. In fact, closer examination 
reveals that the slope of the curve of Figure 7 decreases 
from sample S 1 to sample $6. Notwithstanding this, such 
a universal relationship is quite remarkable. It means 
that, from a mechanical standpoint, the parameter f 
takes into account both the crystallinity and the draw 
ratio of the fibres. Besides, the conspicuous trend of f 
towards zero as E-1 approaches zero (i.e. for very high 
modulus values) indicates that crystal continuity is likely 
to build up at very high draw ratio and high crystallinity, 
in agreement with Ward's model for ultra-high-modulus 
fibres of flexible-chain polymers (see for instance the 
review of ref. 32). It must be noted that our method for 
determining f cannot be applied in the case of crystal 
continuity (i.e. when f = 0 )  because of the very small 
residual elasticity of the fibres. 

The determination of the parameter f cannot be of 
quantitative relevance as concerns the characterization 
of the fibres without measuring in parallel the fraction b 
of the mechanically active part in the fibres (see Figure 
I). In our previous paper 24 we proposed a method of 
estimation for b, which was based on the resolution of 
differential scanning calorimetry curves of the fibres into 
lamellar and fibrillar crystal contributions to the melting. 
This method was successfully used in the case of LLDPE 
but could not be applied unambiguously in the present 
work either for the most crystalline samples, which 
display a single melting peak, or for the less crystalline 
ones, which exhibit very broad and complex melting 
curves. So, pursuing the line of our mechanical approach, 
it is worth pointing out that the slope of the f versus 

samples $5 and $6 are liable to retain a higher 
entanglement density in the amorphous phase than the 
more crystalline samples, as we have already pointed out 
in a paper dealing with the chain topology in ethylene 
copolymers 3°. The strain-hardening effect due to the 
amorphous chain orientation is therefore expected to 
appear early in the stress-elongation curves of samples 
$5 and $6, as predicted by the theory of rubber elasticity 
of highly entangled networks 31. This is why a new 
method of determination for f has been introduced in 
this paper (see the 'Theoretical considerations' section). 
This method has only been applied in the range of low 
elongation ratios of the fibres, that is for 1 < 2 . . . . .  < 1.06, 
as illustrated in Figure 2, since it assumes Gaussian 
behaviour of the amorphous chains. 

Figure 6 shows that the f values determined for the 
six samples vary according to linear relationships when 
plotted as a function of A -2. An interesting conclusion 
can be drawn by comparing this result with the previous 
observation that the compliance of the fibres E-1 is a 

linear function of A - 2 .  Indeed, it ensues from this 
comparison that E-1 is proportional to f ,  for every 
sample studied. This general trend in the mechanical 
behaviour of fibres from linear polyethylenes having 
various crystallinities is in perfect agreement with equation 
(3) and gives additional credit to the model of Fioure 1 
introduced in our former study dealing with a single 
LLDPE. It is worth noticing from Figure 6 that f<0.15 
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Figure 7 Universal plot of the fraction f as a function of the 
compliance E-1 (same symbols as in Figure 3) 
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Table 2 Determination of parameter b according to Figure 7 and 
equation (11) 

Sample S1 $2 $3 $4 $5 $6 
b 0.45 0.45 0.50 0.27 0.25 0.30 

E- 1 correlation of Figure 7 provides a value of bE 1 for 
every sample, by rewriting equation (3) in the form: 

f = b E 1 E -  1 _ E 1 E ~  1 (10) 

The negative intercept f = - E ~ E ~  ~ for E - l = 0  makes 
no sense from a strict physical standpoint. In fact, this 
merely results from the approximations introduced when 
deriving equation (3). If one keeps in mind that E1E ~ 
is very small, equation (10) appears to be fairly consistent 
with the data of Figure 7. Then the determination of b 
from bE1 requires an estimation at least of El, which 
unfortunately cannot be readily obtained from experi- 
mental data. Notwithstanding this, considering that our 
model assumes an unstrained state of the active amor- 
phous fraction f ,  it seems quite realistic to adopt the 
value E1 =0.1GPa 33, which is currently taken for the 
amorphous phase modulus in isotropic polyethylene. 
Besides, from the initial slope of the universal correlation 
of Figure 7, the above assessment of E1 leads to 
b~0.7-0.9 for f--*0, which compares favourably with 
the b values reported by Grubb ~3 for high-modulus 
polyethylene fibres. The values of parameter b estimated 
accordingly for the six polyethylene samples are indicated 
in Table 2. Note that bE~ has been determined from the 
experimental data of every sample in Figure 7. The 
decreasing trend of the parameter b from S1 to $6 which 
appears in Table 2 can be understood as evidence of the 
reduced capability of the samples to develop a fibrillar 
structure under tensile drawing. This is in agreement 
with the lower drawability and the stronger strain- 
hardening effect that we have already reported for 
ethylene copolymers when the crystallinity decreases 34. 
Both phenomena have been attributed to an increase of 
the entanglement density with increasing co-unit concen- 
tration in the solid samples. We suggested that this 
topological modification of the copolymers in parallel 
with their crystallinity lies in the exclusion of the co-units 
from the crystalline phase, which involves a greater 
disturbance of the chain folding process and a con- 
comitant reduced reeling motion of the chains during the 
crystallization stage 3°'34. 

CONCLUSIONS 

This study shows that the tensile modulus of fibres hot 
drawn from linear polyethylenes follows E -  1 versus A -  z 
linear relationships. The measurements have been per- 
formed on six selected materials covering a wide range 
of crystallinities. Grubb's mechanical model for the 
modulus of semicrystalline polymer fibres has been 
satisfactorily applied in this case, at room temperature 
only. Every fibre can be characterized by a value of the 
parameter f ,  which represents the volume fraction of 
amorphous phase in the mechanically active part of the 
fibre. A unique f versus E -1 correlation has been 
obtained, which indicates that the parameter f is related 
to both the crystallinity and the draw ratio of the fibres. 
The decrease of f towards zero at low E- 1 values is in 
agreement with the build-up of crystalline bridges, which 
has been proposed by Ward et al. to account for the 

ultra-high modulus of fibres drawing from high-density 
polyethylenes. Thus, the model with crystal continuity 
can be viewed as a limiting case of Grubb's model. 

The volume fraction of the mechanically active part of 
the fibres falls from 0.5 to 0.25 as the crystallinity of 
the materials decreases. This result is in line with a 
previous conclusion of reduced capability of ethylene 
copolymers to undergo a fibrillar transformation because 
of topological constraints set up during the course of 
crystallization. 

The present model deserves testing in a range of 
temperatures and strain rates. The problem is that our 
method for determining the fraction f assumes a rubbery 
behaviour of the mechanically active amorphous phase 
and neglects the deformation of the crystalline phase. On 
the one hand, lowering the temperatures or increasing 
the strain rate would cause the fl relaxation in the 
amorphous phase to become active, making the assump- 
tion of a rubbery behaviour no longer valid, notably for 
the less crystalline samples. On the other hand, increasing 
the temperature or lowering the strain rate is expected 
to activate the ~t relaxation in the crystal, thus introducing 
a significant viscoelastic contribution to the deformation. 
This is confirmed by the slow recovery of the fibres after 
unloading. 
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